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Overview

@ Introduction

© Nonparametric Estimation of the Expected Discounted Penalty
Function in the Compound Poisson Model

© Anisotropic Multivariate Deconvolution Using Projection on the
Laguerre Basis

@ Nonparametric Multiple Regression on Non-compact Domains
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Multivariate Laguerre basis

The univariate Laguerre functions (¢k)ken are defined as:

B ,
Vx € Ry, ou(x) = V2L (2x)e™, Li(x) = Z (k) ﬂ

=\i)

For k == (k1, ..., kg) € N9, we define the k-th multivariate Laguerre
function as:

‘Pk(x) = (‘pkl Q& Spkd)(x) = Qplq(xl) X X (Pkd(xd)'

The functions (¢k)xene form a basis of L2(RY). Hence, a function
fe Lz(Ri) can be decomposed as:

f=> akpn, ak=(f o)
keNd
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Projection estimator

A projection estimator of a function f € L?(R?) is an estimator of the
form:

fm= > 2kyk, A is an estimator of a,, m € NJ.
k<m-1

We quantify its performance by its Mean Integrated Squared Error (MISE):
| — Pl
Let £, be the projection of f on the space:
Sm=Span(pk : k< m—1), Dp:=dim(Sp)=mi---mg.

The MISE can be decomposed as the sum of a bias term and a variance
term:

E|f — FnlZ = |f = finllZ + || o — funll2-
= dist?a(F,Sm) + > E[(3 — a0)?].

k<m-1
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Sobolev—Laguerre spaces

Definition

For s € (0,+00)9 and L > 0, we define the Sobolev-Laguerre ball of
regularity s and radius L as:

We(R,, L) = {f € L2(RY)

> (k)2 k< L}.

keNd

@ When d = 1, these spaces were introduced by
[Bongioanni and Torrea, 2009] to study the Laguerre operator.

@ When d =1, [Comte and Genon-Catalot, 2015] show that s is the
regularity of the function f.

o If f € WS(RY, L), then the bias term decreases as m; ™! + -

—sy
ot my el
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Hypermatrices

@ For m € N9, let R™ be the space of my x --- X mg hypermatrices.

The spaces Sy, and R™ are isometric (function <« coefficients).

We define the r-contracted product between hypermatrices with
compatible shapes as:

[A X’B]j,l = Z A7kBkg
=(k1,...,kr)

o If G € R™*™M then a— G x4 a is an endomorphism of R™.

As an endomorphism, G € R™*™ has eigenvalues, a trace, an
operator norm, a Frobenius norm,
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Nonparametric Estimation of the Expected
Discounted Penalty Function in the Compound
Poisson Model

Electronic Journal of Statistics, 16(1), 2022.
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The compound Poisson risk model
[Asmussen and Albrecher, 2010]

Let (Ut)t=0 be the reserve process of an insurance company. In the
compound Poisson risk model, this process is given by:

N
U =u+ct—)Y X,
i=1
where:
@ u > 0 is the initial reserve,
@ ¢ > 0 is the premium rate,
@ the claim number process (N;)¢>0 is a homogeneous Poisson process
with intensity A,
o the individual claim sizes (Xj);>1 are positive, i.i.d. with density f and
mean p, independent of (N¢)¢>o.
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The Expected Discounted Penalty Function (EDPF)
We denote the time of ruin by 7 :=inf{t > 0| U; < 0} € R; U {oo}.
Assumption (Safety Loading Condition)

Al We assume that ¢ > Au. Introducing the parameter 6 = ACH the
previous condition is equivalent to 8 < 1.

Under the SLC, we have P[T < o] < 1.
The Expected Discounted Penalty Function ([Gerber and Shiu, 1998]), is
defined as:

(ZS(U) = E[eiéTW(Uva ’U’FD 1{T<oo} ‘ bo = U},
where § > 0 is a discounting force of interest, and w: Ri — R, isa
penalty function.

In the following, we consider the case of the ruin probability (6 = 0 and
w(x,y) = 1).
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Observations and goal

We assume that c is known but the parameters (A, p, f) of the compound
Poisson process are not. We suppose we have access to a trajectory of the
reserve process (Ut)¢c[o,7] On a time interval [0, T], on which we observe:

NT and Xl, cee ’XNT-
Goal

We want to estimate the Gerber—Shiu function from the observations
(N1, X1,...,Xny) with ¢ known but (A, z, f) unknown.
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Renewal equation

Theorem
Under Assumption A1 (SLC), the ruin probability satisfies the equation:

p=9¢xg+h,
with: )\ B ks
g() = 2500, h(w)=2 [ S()dx.

where S(x) = P[Xq1 > x]| is the survival function of the (Xj)i>1.

Following the work of [Comte et al., 2017] and [Mabon, 2017],

[Zhang and Su, 2018] estimate these functions by projection on the
Laguerre basis.

—+o00 —+00 “+o00
b= akpk g=_ bien, h=">" ckpx-
k=0 k=0 k=0
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Estimation of g and h

by:
bk:%E[d)k(X)], Ck:%E[/OX¢k(X)dX],

so we estimate them with empirical means:

. 1 1 & X
by = —= ) k(X Ck = — ) dx.
k=T ; K(Xi), & 7 ;/0 k(x) dx
For m € N4, the projection estimators of g and h are:
m—1 . . m—1
Bm = biox, hm =" & Px-
k=0 k=0
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MISE of &, and Ay,

Assumption

A2 E[X3] is finite.

Proposition

Under Assumptions A1 and A2, we have:

, . A
Ellg — gml?> < distfa(g, Sm) + 5 EIX],
A

E|lh — hm||Z: < dist?(h, Sm) + 32T

E[X3].

@ The variance term does not depend on m.

e For m large enough, the convergence rate is 71.
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Interlude: Laguerre deconvolution [Comte et al., 2017]
[Mabon, 2017]
The Laguerre functions satisfy the relation:
, 1
Vi,k €N, @i x ok =272(@j1k — Pjrk+1)-
Using this relation, one can show that if f and g are two functions on R
then their Laguerre coefficients satisfy:
1
272 (ck(g) — ck—1(g k>1,
c(f r8) = () + Alg). Aulg) = |, (&)~ (6]
272 p(g) tk=0.

If ¢m(f) denotes the vector of the first m coefficients of f, we have:

Ag 0 0 0 O

AN Ag 0 0 O

Cm(f * g) = Gm X Cm(f), Gm = Ag Al Ao 0 0
. AO 0

Am—l Am_z AO
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Laguerre deconvolution estimator

If we use the convolution property of the Laguerre functions in the

equation ¢ = ¢ x g + h, we obtain the following relation between the
coefficients of ¢, g and h:

Cn=AnXa, < a,=A_!xcp,
with A, = Id,,, — G,,.
Assumption
A3 (bky1 — bi)ken € £H(N).

Lemma

Under Assumption A1 and A3, we have ||At|op < R

2
1-[gllx =~ 1-6-
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For 8y < 1 a truncation parameter, we estimate ¢ by:

m—1
2. a A o A-1_ & A-1._ pA-1
qu = Z dk Pk, am = Am X Cm, Am = Am 1 N ) .
o I1A7 ||op<ﬁ

Proposition
Under Assumptions A1, A2, and A3, if 6 < 0y then it holds:

2 . m
Ell¢ — ¢ml|?2 < dist?2(¢, Sm) + C =

@ This method does not recover the rate T~ for the ruin probability
([Pitts, 1994] and [Politis, 2003]).

o The functions g and h are estimated with the rate T~1, but the
deconvolution step loses a factor m in the variance term.
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Laguerre—Fourier estimator [Dussap, 2022]

Since ¢ = ¢ *x g+ h, we have F¢p =
¢ using Plancherel theorem:

1 Fh
= (6.0k) = 5 (F6. Fu) = 27T<1_ o Foc)

Definition

For g and h two estimators of g and h, and for 6y a truncation parameter,
we estimate ¢ by:

my— 1
, 1/ Fh

Fg = (F&)L{7z<00}-
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Proposition

Under Assumption A1 and A2, if 6 < 6y then it holds:
2 )
lp — ¢ < distf> (¢, Smy) + m”h— hl|{2
2||hlIfs lgll?: 2
1 .
ta-ara- \' T -op) Al

If we use the Laguerre projection estimators g, and i)m3, we obtain the
following result.

Corollary
Under Assumptions A1 and A2, if 0 < Oy then it holds:

EH¢ - $m17m27m3HE2 < diStﬁ2(¢a Sm1)

1
+C (distfz(g, Smy) + dist?s(h, Smy) + T) :
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Conclusion and perspectives

@ If ¢ belongs to a Sobolev-Laguerre space of regularity greater than 1,
it is possible to estimate the EDPF with rate 71,

@ The Laguerre deconvolution method fails to recover the parametric
rate.

@ The Laguerre—Fourier method could be extended to more general risk
models.

@ The absence of a bias-variance compromise raises questions about
how to perform a model selection procedure in practice.
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Anisotropic Multivariate Deconvolution Using
Projection on the Laguerre Basis

Journal of Statistical Planning and Inference, 215:23-46, 2021.
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Density estimation from indirect observations

We observe random vectors Zi, ..., Z, in RY such that:

Zi = Xi + Yi7
where:

e X ¢ ]Ri are i.i.d. with unknown density f that we want to estimate;

e Y € Ri are i.i.d. with known density g, and are independent from

the X;.
Under these assumptions, Zj,..., Z, are i.i.d. with density h given by:
Vx € Ri, h(x) = (f * g)(x) = f(t)g(x —t)dt.

d
R+

For d = 1, this problem is studied by [Mabon, 2017] .
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Multivariate Laguerre basis

We assume that f, g and h belong to L2(]Ri), and we decompose them in
the multivariate Laguerre basis:

f=> are g= > beex, h= > ck ok

keNd keNd keNd

Using the relation ¢; * ok = 27Y/2(¢;4k — ¢j1k+1), the convolution
equation h = f x g is equivalent to:

c=pBxa,  Be=29 3 (-1)lp,

e€{0,1}4

with |e| ==¢e1 + -+ + 4.
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Hypermatrices and estimation

Let am, cm € R™ be the hypermatrices of the coefficients ax and ¢, for
k <m—1, and let G,;, € R™*™ be the hypermatrix:

[Gmljk = Bj—k Lks-
Then, we have:
Cn=Gm Xgam < a, = G,_,,1 Xd Cm-

Since the coefficient of h are given by ¢k = E[pk(Z)], we estimate them
with empirical means, and we estimate f with a plug-in estimator:

. . . 1 s L 1¢
fm = Z S0k, Am =Gl XgCm, &= . Zwk(z,-).
i=1

k<m-1
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Upper bound on the variance term

Assumption
Al g is bounded.
A2 For all J C {1,...,d}, the following moments are finite:

@)= |, (Hy—l/z) dy.

ied

A3 B € f1(NY).

Proposition
Under Assumptions A1 and A2, we have:
. c4(g)v/Dm |G| G:1||2
EHfm_ meEz < d(g) ’:H m HOP A HgHOOH m HF’

n

where c4(g) is a constant depending on {M,(g) : J C {1,...,d}}.
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Upper bound on the Frobenius norm

We consider the case d = 1.

Proposition ([Comte et al., 2017])
We assume A3 and we make the following assumptions:

@ The Laplace transform Lg of g does not vanish on the half plane
Pr={seC|Res >0}.

@ The Fourier transform Fg of g has an asymptotic expansion:
Fg(w) = w™*(Kq + 0o(1)), |w| = +o0
with o € N1 and K, # 0.

Then there exists C(g) > 0 depending on g such that for m > 4, we have:

IG,LIE < C(g) m*.
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We consider the case d > 2.
Proposition

We assume A3. We assume that Lg does not vanish on Pj’_ and we
assume there exists o € Ni such that the function:

Ka(s) == (1 +5)* Lg(s), secP,

can be extended to a nonzero function on (Py U {oc})? such that its
restriction to (iR U {co})? is continuous. Then for m € N9 large enough,
there exists C(g) > 0 depending on g such that:

G < C(g) m*.
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Convergence rates

Theorem
Under Assumptions A1, A2 and A3, if we assume that g satisfies the

assumptions of the last proposition with o« € N9, then for Mgy € Ni

given by:

1/(51+SJZ:12:> j=1,....d

Mopt,j X N
we have:

1 1+ 2&,
sup  E[f — FnlPe < CoYOFEL T,

fEWs(RY,L)

These rates are similar to those found on Sobolev balls for a kernel
estimator by [Comte and Lacour, 2013].
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Model selection

We use a procedure similar to the bandwidth selection procedure of

[Goldenshluger and Lepski, 2011] that was introduced for model selection

by [Chagny, 2013] for the estimation of a conditional density.

We consider the model collection:

. d

_ n
Do G713 < o -

Let:

—12 B
Vim) — @V Gu' ey (gl v )G log .
n n
Am) = max (o = Frnar [z = s V(o))
We choose m as:

= arg min{A(m) + x, V(m)}.
meM,
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Oracle bound

Assumption

A4 Y5 >0, Vn € Np, Y pme, IGRt 12, e70VPm < C(5).

Theorem
Under Assumptions A1, A2 and A4, there exists a constant rko(d) > 0
such that for every choice of k1, ky satisfying ko(d) < k1 < kp, we have:

C/

112 : _ 2
Elf —Fal < € inf (I = fallEe + V() + =
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[[lustration

12
34
5 1
6
7

Figure: Density estimation, sample size n = 5000. First column: true density,

second column: adaptive estimator ?,97, third column: max model estimator
f(12,12). The selected model is i = (5, 8).

F. Dussap (MAP5) Soutenance de thése 24/06/2022

30/ 45



Conclusion and perspective

@ We extend the Laguerre deconvolution method to multivariate
functions.

@ We obtain rates of convergence for the density deconvolution problem
on Ri similar to those on RY.

@ OQur estimation strategy assumes that the noise distribution is known.
A future work would be to construct an estimation procedure where
the noise distribution is unknown and has to be estimated too.
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Nonparametric Multiple Regression on
Non-compact Domains

In revision.
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Regression model with random design
Let A C RP, we observe n > 1 r.v. (X, Y;) € A x R given by:

Yi = b(X;) + i,

where:
e (X;) are i.i.d. with unknown distribution .
e (&) are i.i.d. with zero mean and known variance o2
e (X;) and (&;) are independent.

Our goal is to estimate the regression function b: A — R. To quantify the
error of an estimator, we consider two norms:

RS S C S e RO RO}

n i=1

The error relative to the norm ||-||,, can be viewed as a prediction error:

Vb estimator, [|b— b|2 = Ex-,| (b(X) — b(X))® \ Xi, ..., Xn|.
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Assumptions

@ Following [Baraud, 2002], we assume that u < v for a fixed measure
v, and that j—’; is bounded on A. Hence, we have L?(A, 1) C L?(A,v).

@ If Ais compact, we assume that:

d—“(x)) fo > 0.

Vx € A, 4

Hence, the norms ||-||, and |[-||,, are equivalent, and we have
L2(A, 1) = L*(A,v).

© We assume that b € L2"(A, 11) for some r € (1, 40c]. We consider
r' € [1,+00) such that 1 + L =1.

© We assume that A=Ay x--- X Apandthat v =11 ® --- Q@ 1p.
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Projection estimator

Let (¢} )ken be an orthonormal basis of L2(A;,v;). For k € NP, we define:
(%) = (h © - @ @ )(X) = 9 (1) X -+ X @} (%p).

We estimate b by a least squares minimization on S;:

n

by = arg min 1 Z [Yi — t(X,-)]2.

teSm N i=1

Example

© For A= [—m, 7] and v = Leb, we choose the trigonometric basis.

@ For A=R and v = Leb, we choose ¢x(x) = cxHi(x)e /2 with Hy
the k-th Hermite polynomial.
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This estimator can be computed using hypermatrix calculus:

. . 2
bm= Y éf(m)sok, alm = arg min HY — Dy X a‘ o
k<m—1 acR™
=G, x, 5, x1Y,

where Y := (Y1,..., Y,) € R”, and where:

N

G = [kl ER™™, Byi= [gi(X)] R

i, iJj

In the following, we also consider the expectation of Gm:

G = E[Gm] = [ (9}, ‘mﬂ]jk c RmXm.

)
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Basic bound on the empirical risk

We recall the classical bias-variance decomposition of the empirical risk.
Proposition

If Gm is invertible, then we have:

. Dum
E|[|b — bml1? 2,

3 2
X1, Xo| = Jnf Ib = |7 + 0
If Gm is invertible a.s., then we have:

A D
2 . 2 2Vm
E|lb — bml; < tIGnSmeb_ tl, +o g
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From the empirical norm to the design norm
We introduce the event:

Qm(d) = { sup HtHé < 1}, 5 €(0,1).
resam\{oy [[El7 19

Using matrix concentration inequalities from [Tropp, 2012], the following
bound holds.

Lemma

For all § € (0,1) and all m € NF, we have:

P[Qun(6)°] < D exp (—h(é)W) :

where h(§) = (1 — &) log(1 — &) + d, and where:

> vk

k<m-—1

t 2
wp L

L(m) = = i
( - N P
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Remarks on the lemma

For the trigonometric basis, we have L(m) < m.

For the Hermite basis, we have L(m) < Cy/m.

e If Ais compact, then we have ||G};![|op < 1/fo.

If A=TR and (px)ken is the Hermite basis, then we have
G llop = C(1)+/m [Comte and Genon-Catalot, 2020].
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Bound on the prediction risk

Let us consider the collection:

Mo = {m e NP

Lm)(1G ep v 1) < ooz .
If m € M, o, then we have P[Q,;,(6)°] < Dy n™® < noFL,
Theorem

For all a € (0, Tlﬂ) and for all m € M, ., we have:

) D 1
Ellb — bl < Caler, ) inf 16— t]2 + C'(a ) o2 n'"+o< )

n

F. Dussap (MAP5) Soutenance de thése 24/06/2022 40 /45



Model selection and oracle bound for the empirical risk
We choose the model with a penalized criterion:

X . A D

m = arg min (—||bm||f, + pen(m)) , pen(m) = (1+6)c>—7,

mE/T/(\nﬁ n

—

Mg = {m S Nfr

L(m) (|16 op V' 1) < B }

log n
Using a fixed design result of [Baraud, 2000], we obtain the following

oracle bound.

Theorem

If Ele1|9 is finite for some q > 6, then there exists a constant g, > 0
such that for all o € (0,ap,), we have:

D, 3 1
AR < CO) inf <in5f Ib—t]2 +a2:)+a2M+o<>,

meM; o n n

with £(9,q) = C'(0,q) 25" 5= e D* .
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Oracle bound for the prediction risk

Theorem

If A is compact:

If E|e1|9 is finite for some q > 6, then there exists §* > 0 such that for all
B € (0,3*), there exists ag ,» > 0 such that for all « € (0, g /), we have:

A o Dim
E|lb— balf, < C(6.6,1), inf (t.ensfmub )2+ gzn>

+ C'(B, r)a2@ +o<i>,

with:

B n
L(m) (1IGm'llop V' 1) < alogn}’

Mo = {meNi L(m) (167 oo v 1) < B }

log n
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Oracle bound for the prediction risk

Theorem
If A is not compact:

If E|e1|9 is finite for some q > 6, then there exists §* > 0 such that for all
B € (0,3*), there exists ag ,» > 0 such that for all « € (0, g /), we have:

A o Dim
E|lb— balf, < C(6.6,1), inf (t.ensfmub )2+ gzn>

+ C'(B, r)a2@ +o<i>,

with:

B n
L(m) (HGmIng v 1) S alogn}7

. n
Fps = {m e 8 | Lm) (165112, v 1) < 5 ).

F. Dussap (MAP5) Soutenance de thése 24/06/2022 43 /45



Conclusion and perspective

@ We obtain a bound on the prediction risk by using concentration
inequalities of [Gittens and Tropp, 2011] and [Tropp, 2012] on the
eigenvalues of a random matrix.

e We improve the oracle bounds of [Baraud, 2002] and
[Comte and Genon-Catalot, 2020].

@ | think that these results can be extended to more general
approximation spaces (Sm)men,, that are not constructed from an
orthonormal basis.
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General conclusion

@ | use tensorized bases to construct projection estimators of
multavariate functions in deconvolution and regression problems.

@ Hypermatrices are a natural extension of matrices that allow me to
study the MISE of projection estimators in a way that is similar to the

one-dimensional case.

@ The Goldenshluger and Lepski’'s method provides a general framework
to construct adaptive estimators in this context.

@ These techniques can be used to study more complex inverse
problems in a multivariate setting.
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Merci pour votre attention !
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