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Regression model with random design
Let A C RP, we observe n > 1 r.v. (X, Y;) € A x R given by:

Yi = b(X;) + i,

where:
e (X;) are i.i.d. with unknown distribution .
e (&) are i.i.d. with zero mean and known variance o2
e (X;) and (&;) are independent.

Our goal is to estimate the regression function b: A — R. To quantify the
error of an estimator, we consider two norms:

RS S C S e RO RO}

n i=1

The error relative to the norm ||-||,, can be viewed as a prediction error:

Vb estimator, [|b— b|2 = Ex-,| (b(X) — b(X))® \ Xi, ..., Xn|.
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Assumptions

@ We assume that u < v for a fixed measure v, and that ‘j—’,j is bounded
on A. Hence, we have L2(A, 1) C L?(A,v).

@ If Ais compact, we assume that:

dﬁ(XD fo > 0.

A
Vx € A, v

Hence, the norms ||-||, and |[-||,, are equivalent, and we have
L2(A, ) = L2(A,v).

© We assume that b € L?"(A, 1) for some r € (1, 4+0c]. We consider
r' € [1,+00) such that 1 + L =1.

© We assume that A=Ay x--- x Apandthat v =11 ® --- Q@ 1p.
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Projection estimator

Let (¢%)ken be an orthonormal basis of L2(A;,v;). We construct a basis
of L2(A,v) by tensorization. For all k = (ki, ..., k,) € NP we define:

pi(x) = (0l @ - ® G )(x) = @i, (x1) X - X 9} (%p)-
For m € NF_, we consider the model:
Sm = Span (¢k : Vi, 0 < ki < mj), Dpm:=dim(Sm)=my---mp,

and we estimate b by a least squares minimization on Sp,:

n

N 1
bm = argmin =Y " [Y; — t(X,-)]z.
tESm n i=1

Example

© For A=[—m,n] and v = Leb, we choose the trigonometric basis.

@ For A=R and v = Leb, we choose ¢y(x) = cxHi(x)e /2 with Hj
the k-th Hermite polynomial.
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This estimator can be computed using matrix calculus. Let (¢1,...,¢p,,)

be an orthonormal basis of Sy, for the inner product (-,-),, we have:

Dpm,
r N a(m) A(m) ._ - ‘ & Al
bm_zj ?j, a ._argngln‘Y @ma‘Rn
j=1 acRPm

=G, &;,Y,
where Y = (Y1,...,Y,) € R", and where:

Gm = [(@f)j, ¢k)n]

; e RO DOm - &, = [gf)j(xi)] y € R™Pm,

In the following, we also consider the expectation of Gm:

Gm = E[Gm] = [(9), ¢k>u]j € ROm<On,
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Basic bound on the empirical risk

We recall the classical bias-variance decomposition of the empirical risk.
Proposition

If Gm is invertible, then we have:

Ex |[16 = bml2] = E[I6 - bmll;

Xi,..., xn]
D
= inf ||b—t]|2 +o*>—2.
tESm n
If G,,, is invertible a.s., then we have:

A D
2 . 2 2Vm
E[[b = bmlls < jinf ||b—t|l), + 07"
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From the empirical norm to the design norm
We introduce the event:

Qm(d) = { sup HtHé < 1}, 5 €(0,1).
resam\{oy [[El7 19

Using matrix concentration inequalities from [Tropp, 2012], the following
bound holds.

Lemma

For all § € (0,1) and all m € NF, we have:

P[Q2m(6)°] < Dmexp (h((g)L(m)Z”),
where h(§) = (1 — &) log(1 — &) + d, and where:

> vk

k<m-—1

t 2
wp Ll

L(m) = = i
( e TR
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Remarks on the lemma

For the trigonometric basis, we have L(m) < m.

For the Hermite basis, we have L(m) < Cy/m.

e If Ais compact, then we have ||G;;![|op < 1/fo.

If A=TR and (x)ken is the Hermite basis, then we have
G llop = C(1)y/m [Comte and Genon-Catalot, 2020].
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Bound on the prediction risk

Let us consider the collection:

Mo = {m e NP

L(m)([IG lop V' 1) < Oﬁogn}-
If m € M, o, then we have P[Q,,(6)] < D n= @ < poFL,
Theorem

For all o € (0, 5+ ) and for all m € M, . we have:

) D 1
Ellb — bl < Caler, ) inf 16— t]2 + C'(a ) o2 n'"+o< )

n
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A model selection result in a fixed design setting

Let M, a model collection that may depend on the (X;), and let:
A . 7 2 2 Dm
M = arg min (—HbmHn + pen(m)) , pen(m) = (1+60)o"—.
meM,

Theorem ([Baraud, 2000])

If E|e1|9 is finite for some q > 4, then the following upper bound holds:

" D, )N
Ex||b— b,;,||% < C(#) inf_ <tin5f b — t||%+02r:") +02M,
ES5m

meM, n

with To(6,q) = C'(6,) 2 s D82,
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Oracle bound for the empirical risk

We choose the model collection:

—~

M”»ﬁ = {m S Ni

21 < n
Lm) (16t lop v 1) < B .
Theorem

If Ele1|9 is finite for some q > 6, then there exists a constant g, > 0
such that for all o € (0,ap,), we have:

Ellb—bal2 < C(6) inf (lnf 16— t]2 + 2[;"')”2@%(,17),

eMn et

with ¥(0, 4) = C'(0, 4) 254 e Dn'* 2.
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Oracle bound for the prediction risk

Theorem

If A is compact:

If E|e1|9 is finite for some q > 6, then there exists §* > 0 such that for all
B € (0,3*), there exists ag ,» > 0 such that for all « € (0, g /), we have:

. : : Dm
Ellb— bl < C(6.8,)  inf ( inf lIb—elz + 02

+ C'(B, r)a2@ +o<,17>,

with:

B n
L(m) (1IGm'llop V' 1) < alogn}’

Mo = {meNi L(m) (1671 op v 1) < B }

log n
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Oracle bound for the prediction risk

Theorem
If A is not compact:

If E|e1|9 is finite for some q > 6, then there exists §* > 0 such that for all
B € (0,3*), there exists ag ,» > 0 such that for all « € (0, g /), we have:

E|lb — ball2 < C(6,8,r) _inf ( inf [1b— t]]? + U2Dr:">

meMn,a tESm
+ C'(B,r) 02—2(% 9) + o<’17>7

with:

Lom) (IG5 13 v 1) < oo,
Lom) (165113 v 1) < B |

log n
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Conclusion and perspective

@ We obtain bounds for the empirical risk from the results for fixed
design regression.

@ To obtain a bound on the prediction risk, we need to study the
minimum eigenvalue of a random matrix. We do so by using
concentration inequalities of [Gittens and Tropp, 2011] and
[Tropp, 2012].

e We improve the results of [Baraud, 2002] and
[Comte and Genon-Catalot, 2020].

@ | think that these results can be extended to more general

approximation spaces (Sm)men,, that are not constructed from an
orthonormal basis.
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Sketch of the proof of the lemma

The proof is inspired by [Cohen et al., 2013]. Let (¢1,...,¢p,,) be an
orthonormal of Sy, for the inner product (-,-),, and let Hp, be their Gram
matrix relative to the empirical inner product, that is:

Hom = [(¢), 61}l , € ROm*Om.

Then, we have:

2
||t||g _ HH;11HOP —
tesa\{o} [Itll7

1
)\min(Hm) )
Hence, we can rewrite the event as:

Qm(8)° = {Amin(Hm) <1 =6} = {Amin(Hm) < (1 = 0)Amin(E[Hm])},
since E[Hp,] = Idp,,.
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We conclude using the following concentration inequality.

Theorem ([Gittens and Tropp, 2011], [Tropp, 2012])

Let Zy,...,Z, be independent random self-adjoint positive semi-definite
matrices with dimension d, such that sup, Amax(Zx) < R a.s. If we define:

Kmin = Amin <i IE[Zk]> )

k=1

e_6 ;Ufmin/R

e6 ,U«min/R
< ((1 ¥ 5)(1+6>> |
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then we have:
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