Nonparametric Regression by Projection on Non-compactly Supported Bases

Florian Dussap

53^e Journées de Statistique Juin 2022

Regression model with random design

Let $A \subset \mathbb{R}^p$, we observe $n \geqslant 1$ r.v. $(X_i, Y_i) \in A \times \mathbb{R}$ given by:

$$Y_i = b(\boldsymbol{X}_i) + \varepsilon_i,$$

where:

- (X_i) are i.i.d. with unknown distribution μ .
- (ε_i) are i.i.d. with zero mean and known variance σ^2 .
- (X_i) and (ε_i) are independent.

Our goal is to estimate the regression function $b \colon A \to \mathbb{R}$. To quantify the error of an estimator, we consider two norms:

$$\|t\|_n^2 \coloneqq \frac{1}{n} \sum_{i=1}^n t(\boldsymbol{X}_i)^2, \quad \|t\|_{\mu}^2 \coloneqq \int_A t(\boldsymbol{x})^2 d\mu(\boldsymbol{x}).$$

The error relative to the norm $\|\cdot\|_{\mu}$ can be viewed as a prediction error:

$$egin{aligned} egin{aligned} \hat{b} & ext{estimator}, & \|b - \hat{b}\|_{\mu}^2 = \mathbb{E}_{oldsymbol{X} \sim \mu} igg[(b(oldsymbol{X}) - \hat{b}(oldsymbol{X}))^2 \, \Big| \, oldsymbol{X}_1, \ldots, oldsymbol{X}_n igg]. \end{aligned}$$

Assumptions

- We assume that $\mu \ll \nu$ for a fixed measure ν , and that $\frac{d\mu}{d\nu}$ is bounded on A. Hence, we have $L^2(A,\mu) \subset L^2(A,\nu)$.
- ② If A is compact, we assume that:

$$\forall \mathbf{x} \in A, \quad \frac{\mathrm{d}\mu}{\mathrm{d}\nu}(\mathbf{x}) \geqslant f_0 > 0.$$

Hence, the norms $\|\cdot\|_{\mu}$ and $\|\cdot\|_{\nu}$ are equivalent, and we have $L^2(A,\mu)=L^2(A,\nu)$.

- **3** We assume that $b \in L^{2r}(A, \mu)$ for some $r \in (1, +\infty]$. We consider $r' \in [1, +\infty)$ such that $\frac{1}{r} + \frac{1}{r'} = 1$.
- **③** We assume that $A = A_1 \times \cdots \times A_p$ and that $\nu = \nu_1 \otimes \cdots \otimes \nu_p$.

Projection estimator

Let $(\varphi_k^i)_{k\in\mathbb{N}}$ be an orthonormal basis of $L^2(A_i, \nu_i)$. We construct a basis of $L^2(A, \nu)$ by tensorization. For all $\mathbf{k} = (k_1, \dots, k_p) \in \mathbb{N}^p$ we define:

$$\varphi_{\mathbf{k}}(\mathbf{x}) \coloneqq (\varphi_{k_1}^1 \otimes \cdots \otimes \varphi_{k_p}^p)(\mathbf{x}) \coloneqq \varphi_{k_1}^1(x_1) \times \cdots \times \varphi_{k_p}^p(x_p).$$

For $m \in \mathbb{N}_+^p$, we consider the model:

$$S_{\boldsymbol{m}} \coloneqq \operatorname{Span}\left(\varphi_{\boldsymbol{k}}: \forall i, \ 0 \leqslant k_i < m_i\right), \quad D_{\boldsymbol{m}} \coloneqq \dim(S_{\boldsymbol{m}}) = m_1 \cdots m_p,$$

and we estimate b by a least squares minimization on S_m :

$$\hat{b}_{m} := \underset{t \in S_{m}}{\operatorname{arg \, min}} \frac{1}{n} \sum_{i=1}^{n} [Y_{i} - t(\boldsymbol{X}_{i})]^{2}.$$

Example

- For $A = [-\pi, \pi]$ and $\nu = \text{Leb}$, we choose the trigonometric basis.
- ② For $A = \mathbb{R}$ and $\nu = \text{Leb}$, we choose $\varphi_k(x) = c_k H_k(x) e^{-x^2/2}$ with H_k the k-th Hermite polynomial.

This estimator can be computed using matrix calculus. Let $(\phi_1, \dots, \phi_{D_m})$ be an orthonormal basis of S_m for the inner product $\langle \cdot, \cdot \rangle_{\nu}$, we have:

$$\begin{split} \hat{b}_{\pmb{m}} &= \sum_{j=1}^{D_{\pmb{m}}} \hat{a}_j^{(\pmb{m})} \phi_j, \qquad \hat{\mathbf{a}}^{(\pmb{m})} \coloneqq \operatorname*{arg\,min}_{\mathbf{a} \in \mathbb{R}^{D_{\pmb{m}}}} \left\| \mathbf{Y} - \hat{\mathbf{\Phi}}_{\pmb{m}} \, \mathbf{a} \right\|_{\mathbb{R}^n}^2 \\ &= \hat{\mathbf{G}}_{\pmb{m}}^{-1} \, \hat{\mathbf{\Phi}}_{\pmb{m}}^* \, \mathbf{Y}, \end{split}$$

where $\mathbf{Y} := (Y_1, \dots, Y_n) \in \mathbb{R}^n$, and where:

$$\hat{\mathbf{G}}_{\boldsymbol{m}} \coloneqq \left[\langle \phi_j, \phi_k \rangle_n \right]_{j,k} \in \mathbb{R}^{D_{\boldsymbol{m}} \times D_{\boldsymbol{m}}}, \quad \hat{\mathbf{\Phi}}_{\boldsymbol{m}} \coloneqq \left[\phi_j(\boldsymbol{X}_i) \right]_{i,j} \in \mathbb{R}^{n \times D_{\boldsymbol{m}}}.$$

In the following, we also consider the expectation of $\hat{\mathbf{G}}_m$:

$$\mathbf{G}_{m} := \mathbb{E}[\hat{\mathbf{G}}_{m}] = \left[\langle \phi_{j}, \phi_{k} \rangle_{\mu} \right]_{j,k} \in \mathbb{R}^{D_{m} \times D_{m}}.$$

Basic bound on the empirical risk

We recall the classical bias-variance decomposition of the empirical risk.

Proposition

If $\hat{\mathbf{G}}_{m}$ is invertible, then we have:

$$\mathbb{E}_{\boldsymbol{X}}\left[\|\boldsymbol{b} - \hat{\boldsymbol{b}}_{\boldsymbol{m}}\|_{n}^{2}\right] := \mathbb{E}\left[\|\boldsymbol{b} - \hat{\boldsymbol{b}}_{\boldsymbol{m}}\|_{n}^{2} \mid \boldsymbol{X}_{1}, \dots, \boldsymbol{X}_{n}\right]$$
$$= \inf_{t \in S_{\boldsymbol{m}}} \|\boldsymbol{b} - t\|_{n}^{2} + \sigma^{2} \frac{D_{\boldsymbol{m}}}{n}.$$

If $\hat{\mathbf{G}}_{m}$ is invertible a.s., then we have:

$$\mathbb{E}\|b-\hat{b}_{\boldsymbol{m}}\|_{n}^{2} \leqslant \inf_{t \in S_{\boldsymbol{m}}} \|b-t\|_{\mu}^{2} + \sigma^{2} \frac{D_{\boldsymbol{m}}}{n}.$$

From the empirical norm to the design norm

We introduce the event:

$$\Omega_{\mathbf{m}}(\delta) := \left\{ \sup_{t \in \mathcal{S}_{\mathbf{m}} \setminus \{0\}} \frac{\|t\|_{\mu}^2}{\|t\|_{n}^2} \leqslant \frac{1}{1 - \delta} \right\}, \quad \delta \in (0, 1).$$

Using matrix concentration inequalities from [Tropp, 2012], the following bound holds.

Lemma

For all $\delta \in (0,1)$ and all $\mathbf{m} \in \mathbb{N}_+^p$, we have:

$$\mathbb{P}[\Omega_{\boldsymbol{m}}(\delta)^{\mathsf{c}}] \leqslant D_{\boldsymbol{m}} \exp\left(-h(\delta) \frac{n}{L(\boldsymbol{m}) \|\mathbf{G}_{\boldsymbol{m}}^{-1}\|_{\mathsf{op}}}\right),$$

where $h(\delta) := (1 - \delta) \log(1 - \delta) + \delta$, and where:

$$L(\boldsymbol{m}) := \left\| \sum_{\boldsymbol{k} < \boldsymbol{m} = 1} \varphi_{\boldsymbol{k}}^2 \right\|_{\infty} = \sup_{t \in S_{\boldsymbol{m}} \setminus \{0\}} \frac{\|t\|_{\infty}^2}{\|t\|_{\nu}^2}.$$

Remarks on the lemma

- For the trigonometric basis, we have $L(m) \leq m$.
- For the Hermite basis, we have $L(m) \leqslant C\sqrt{m}$.
- If A is compact, then we have $\|\mathbf{G}_{\boldsymbol{m}}^{-1}\|_{\text{op}} \leqslant 1/f_0$.
- If $A = \mathbb{R}$ and $(\varphi_k)_{k \in \mathbb{N}}$ is the Hermite basis, then we have $\|\mathbf{G}_{m}^{-1}\|_{\text{op}} \ge C(\mu)\sqrt{m}$ [Comte and Genon-Catalot, 2020].

Bound on the prediction risk

Let us consider the collection:

$$\mathcal{M}_{\textit{n},\alpha} \coloneqq \Big\{ \textit{\textbf{m}} \in \mathbb{N}_+^{\textit{\textbf{p}}} \, \bigg| \, \textit{\textbf{L}}(\textit{\textbf{m}}) \big(\| \mathbf{G}_{\textit{\textbf{m}}}^{-1} \|_{\mathsf{op}} \vee 1 \big) \leqslant \alpha \frac{\textit{\textbf{n}}}{\log \textit{\textbf{n}}} \Big\}.$$

If $m \in \mathcal{M}_{n,\alpha}$, then we have $\mathbb{P}[\Omega_m(\delta)^c] \leqslant D_m n^{-\alpha} \leqslant n^{-\alpha+1}$.

Theorem

For all $\alpha \in (0, \frac{1}{2r'+1})$ and for all $\mathbf{m} \in \mathcal{M}_{n,\alpha}$ we have:

$$\mathbb{E}\|b-\hat{b}_{\boldsymbol{m}}\|_{\mu}^{2} \leqslant C_{\boldsymbol{n}}(\alpha,r')\inf_{t\in S_{\boldsymbol{m}}}\|b-t\|_{\mu}^{2}+C'(\alpha,r')\sigma^{2}\frac{D_{\boldsymbol{m}}}{n}+o\left(\frac{1}{n}\right).$$

A model selection result in a fixed design setting

Let $\widehat{\mathcal{M}}_n$ a model collection that may depend on the (\boldsymbol{X}_i) , and let:

$$\hat{\pmb{m}} \coloneqq \arg\min_{\pmb{m} \in \widehat{\mathcal{M}}_n} \left(-\|\hat{b}_{\pmb{m}}\|_n^2 + \mathrm{pen}(\pmb{m}) \right), \ \ \mathrm{pen}(\pmb{m}) \coloneqq \left(1 + \theta\right) \sigma^2 \frac{D_{\pmb{m}}}{n}.$$

Theorem ([Baraud, 2000])

If $\mathbb{E}|\varepsilon_1|^q$ is finite for some q>4, then the following upper bound holds:

$$\mathbb{E}_{\boldsymbol{X}} \|b - \hat{b}_{\hat{\boldsymbol{m}}}\|_n^2 \leqslant C(\theta) \inf_{\boldsymbol{m} \in \widehat{\mathcal{M}}_n} \left(\inf_{\boldsymbol{t} \in S_{\boldsymbol{m}}} \|b - \boldsymbol{t}\|_n^2 + \sigma^2 \frac{D_{\boldsymbol{m}}}{n} \right) + \sigma^2 \frac{\Sigma_n(\theta, q)}{n},$$

with
$$\Sigma_n(\theta,q) := C'(\theta,q) \frac{\mathbb{E}|\varepsilon_1|^q}{\sigma^q} \sum_{\boldsymbol{m} \in \widehat{\mathcal{M}}_n} D_{\boldsymbol{m}}^{-(\frac{q}{2}-2)}.$$

Oracle bound for the empirical risk

We choose the model collection:

$$\widehat{\mathcal{M}}_{n,\beta} := \Big\{ \boldsymbol{m} \in \mathbb{N}_+^p \, \Big| \, L(\boldsymbol{m}) \big(\| \hat{\mathbf{G}}_{\boldsymbol{m}}^{-1} \|_{\mathsf{op}} \vee 1 \big) \leqslant \beta \frac{n}{\log n} \Big\}.$$

Theorem

If $\mathbb{E}|\varepsilon_1|^q$ is finite for some q>6, then there exists a constant $\alpha_{\beta,r'}>0$ such that for all $\alpha\in(0,\alpha_{\beta,r'})$, we have:

$$\begin{split} \mathbb{E}\|b - \hat{b}_{\hat{\boldsymbol{m}}}\|_n^2 &\leqslant C(\theta) \inf_{\boldsymbol{m} \in \mathcal{M}_{n,\alpha}} \left(\inf_{\boldsymbol{t} \in S_{\boldsymbol{m}}} \|b - \boldsymbol{t}\|_{\mu}^2 + \sigma^2 \frac{D_{\boldsymbol{m}}}{n}\right) + \sigma^2 \frac{\Sigma(\theta,q)}{n} + o\left(\frac{1}{n}\right), \\ \text{with } \Sigma(\theta,q) &\coloneqq C'(\theta,q) \frac{\mathbb{E}|\varepsilon_1|^q}{\sigma^q} \sum_{\boldsymbol{m} \in \mathbb{N}_+^p} D_{\boldsymbol{m}}^{-(\frac{q}{2}-2)}. \end{split}$$

Oracle bound for the prediction risk

Theorem

If A is compact:

If $\mathbb{E}|\varepsilon_1|^q$ is finite for some q>6, then there exists $\beta^*>0$ such that for all $\beta\in(0,\beta^*)$, there exists $\alpha_{\beta,r'}>0$ such that for all $\alpha\in(0,\alpha_{\beta,r'})$, we have:

$$\mathbb{E}\|b - \hat{b}_{\hat{m}}\|_{\mu}^{2} \leq C(\theta, \beta, r) \inf_{\boldsymbol{m} \in \mathcal{M}_{n,\alpha}} \left(\inf_{\mathbf{t} \in S_{\boldsymbol{m}}} \|b - t\|_{\mu}^{2} + \sigma^{2} \frac{D_{\boldsymbol{m}}}{n} \right) + C'(\beta, r) \sigma^{2} \frac{\Sigma(\theta, q)}{n} + o\left(\frac{1}{n}\right),$$

with:

$$\mathcal{M}_{n,\alpha} := \left\{ \boldsymbol{m} \in \mathbb{N}_{+}^{p} \, \middle| \, L(\boldsymbol{m}) \left(\| \mathbf{G}_{\boldsymbol{m}}^{-1} \|_{\mathsf{op}} \vee 1 \right) \leqslant \alpha \frac{n}{\log n} \right\},$$
$$\widehat{\mathcal{M}}_{n,\beta} := \left\{ \boldsymbol{m} \in \mathbb{N}_{+}^{p} \, \middle| \, L(\boldsymbol{m}) \left(\| \hat{\mathbf{G}}_{\boldsymbol{m}}^{-1} \|_{\mathsf{op}} \vee 1 \right) \leqslant \beta \frac{n}{\log n} \right\}.$$

Oracle bound for the prediction risk

Theorem

If A is not compact:

If $\mathbb{E}|\varepsilon_1|^q$ is finite for some q>6, then there exists $\beta^*>0$ such that for all $\beta\in(0,\beta^*)$, there exists $\alpha_{\beta,r'}>0$ such that for all $\alpha\in(0,\alpha_{\beta,r'})$, we have:

$$\mathbb{E}\|b - \hat{b}_{\hat{m}}\|_{\mu}^{2} \leq C(\theta, \beta, r) \inf_{\boldsymbol{m} \in \mathcal{M}_{n,\alpha}} \left(\inf_{\mathbf{t} \in S_{\boldsymbol{m}}} \|b - t\|_{\mu}^{2} + \sigma^{2} \frac{D_{\boldsymbol{m}}}{n} \right) + C'(\beta, r) \sigma^{2} \frac{\Sigma(\theta, q)}{n} + o\left(\frac{1}{n}\right),$$

with:

$$\mathcal{M}_{n,\alpha} := \left\{ \boldsymbol{m} \in \mathbb{N}_{+}^{p} \, \middle| \, L(\boldsymbol{m}) \left(\| \mathbf{G}_{\boldsymbol{m}}^{-1} \|_{\operatorname{op}}^{2} \vee 1 \right) \leqslant \alpha \frac{n}{\log n} \right\},$$
$$\widehat{\mathcal{M}}_{n,\beta} := \left\{ \boldsymbol{m} \in \mathbb{N}_{+}^{p} \, \middle| \, L(\boldsymbol{m}) \left(\| \hat{\mathbf{G}}_{\boldsymbol{m}}^{-1} \|_{\operatorname{op}}^{2} \vee 1 \right) \leqslant \beta \frac{n}{\log n} \right\}.$$

Conclusion and perspective

- We obtain bounds for the empirical risk from the results for fixed design regression.
- To obtain a bound on the prediction risk, we need to study the minimum eigenvalue of a random matrix. We do so by using concentration inequalities of [Gittens and Tropp, 2011] and [Tropp, 2012].
- We improve the results of [Baraud, 2002] and [Comte and Genon-Catalot, 2020].
- I think that these results can be extended to more general approximation spaces $(S_m)_{m \in \mathcal{M}_n}$, that are not constructed from an orthonormal basis.

References

Baraud, Y. (2000).

Model selection for regression on a fixed design. Probability Theory and Related Fields, 117(4):467–493.

Baraud, Y. (2002).

Model selection for regression on a random design. *ESAIM: Probability and Statistics.* 6:127–146.

Cohen, A., Davenport, M. A., and Leviatan, D. (2013).

On the Stability and Accuracy of Least Squares Approximations.

Foundations of Computational Mathematics, 13(5):819–834.

Comte, F. and Genon-Catalot, V. (2020).

Regression function estimation as a partly inverse problem.

Annals of the Institute of Statistical Mathematics, 72(4):1023–1054.

Gittens, A. and Tropp, J. A. (2011).

Tail bounds for all eigenvalues of a sum of random matrices. arXiv:1104.4513 [math].

Tropp, J. A. (2012).

User-Friendly Tail Bounds for Sums of Random Matrices.

Foundations of Computational Mathematics, 12(4):389-434.

Sketch of the proof of the lemma

The proof is inspired by [Cohen et al., 2013]. Let $(\phi_1, \ldots, \phi_{D_m})$ be an orthonormal of S_m for the inner product $\langle \cdot, \cdot \rangle_{\mu}$, and let H_m be their Gram matrix relative to the empirical inner product, that is:

$$\mathbf{H}_{m} := \left[\langle \phi_{j}, \phi_{k} \rangle_{n} \right]_{j,k} \in \mathbb{R}^{D_{m} \times D_{m}}.$$

Then, we have:

$$\sup_{t \in S_{m} \setminus \{0\}} \frac{\|t\|_{\mu}^{2}}{\|t\|_{n}^{2}} = \|\mathbf{H}_{m}^{-1}\|_{\text{op}} = \frac{1}{\lambda_{\min}(\mathbf{H}_{m})}.$$

Hence, we can rewrite the event as:

$$\Omega_{\textit{m}}(\delta)^{\text{c}} = \big\{\lambda_{\min}(\mathbf{H}_{\textit{m}}) < 1 - \delta\big\} = \big\{\lambda_{\min}(\mathbf{H}_{\textit{m}}) < (1 - \delta)\lambda_{\min}(\mathbb{E}[\mathbf{H}_{\textit{m}}])\big\},$$

since $\mathbb{E}[\mathbf{H}_{m}] = \mathbf{Id}_{D_{m}}$.

We conclude using the following concentration inequality.

Theorem ([Gittens and Tropp, 2011], [Tropp, 2012])

Let $\mathbf{Z}_1, \dots, \mathbf{Z}_n$ be independent random self-adjoint positive semi-definite matrices with dimension d, such that $\sup_k \lambda_{\max}(\mathbf{Z}_k) \leqslant R$ a.s. If we define:

$$\mu_{\min} \coloneqq \lambda_{\min} \left(\sum_{k=1}^{n} \mathbb{E}[\mathbf{Z}_k] \right),$$

then we have:

$$\mathbb{P}\bigg[\lambda_{\min}\bigg(\sum_{k=1}^{n}\mathbf{Z}_{k}\bigg)\leqslant (1-\delta)\mu_{\min}\bigg]\leqslant d\times \bigg(\frac{\mathrm{e}^{-\delta}}{(1-\delta)^{(1-\delta)}}\bigg)^{\mu_{\min}/R}\,,$$

$$\mathbb{P}\bigg[\lambda_{\min}\bigg(\sum_{k=1}^{n}\mathbf{Z}_{k}\bigg)\geqslant (1+\delta)\mu_{\min}\bigg]\leqslant \bigg(\frac{\mathrm{e}^{\delta}}{(1+\delta)^{(1+\delta)}}\bigg)^{\mu_{\min}/R}\,.$$