

TD 1.5 – Dénombrement et coefficients binomiaux

Exercice 1. On dispose de 10 livres à ranger sur une étagère. Parmi ceux-ci, 5 sont des livres de mathématiques, 3 des livres de physique et 2 des livres d'informatique.

- 1. De combien de façon peut-on disposer les livres?
- 2. Combien y a-t-il de dispositions si les livres traitant d'un même sujet doivent rester groupés?

Exercice 2. On considère un cadenas à 5 roues comportant chacune les chiffres de 0 à 9.

- 1. Combien y a-t-il de codes possibles?
- 2. Combien y a-t-il de codes comportant exactement 3 fois le chiffres 8?
- 3. Combien y a-t-il de combinaisons contenant au moins une fois le chiffre 8?

Exercice 3. Parmi 11 amis proches, vous souhaiter en inviter 5 à diner.

- 1. Combien de groupes différents d'amis pouvez-vous inviter?
- 2. Combien y a-t-il de possibilités si deux d'entre eux sont en couple et ne peuvent venir qu'ensemble?
- 3. Combien y a-t-il de possibilités si deux d'entre eux se détestent et ne peuvent pas venir ensemble?

Exercice 4. Un gang de 5 voleurs a dérobé 3 diamants. Dans chacun des cas suivants, calculer le nombre de partages possibles du butin.

- 1. Les diamants sont différents et attribués à 3 voleurs différents.
- 2. Les diamants sont différents et chaque voleur peut en recevoir plusieurs (ou zéro).
- 3. Les diamants sont identiques et attribués à 3 voleurs différents.
- 4. Les diamants sont identiques et chaque voleur peut en recevoir plusieurs (ou zéro).

Exercice 5. Lors d'une partie de bridge, on distribue l'intégralité d'un jeu de 52 cartes à 4 joueurs. Combien y a-t-il de donnes possibles?

Exercice 6. On considère un jeu de 52 cartes. Compter le nombre de mains de 5 cartes qui sont :

- 1. une quinte flush.
- **4.** une couleur.

7. une double paire.

2. un carré.

5. une suite.

8. une paire.

3. un full.

6. un brelan.

9. une carte simple.

Attention: une couleur ne doit pas être une quinte flush, un brelan ne doit pas être un carré, etc.

Exercice 7. Soient $n, p \in \mathbb{N}$ avec $p \le n$.

- **1.** Montrer que $\binom{n+1}{p+1} = \binom{n}{p} + \binom{n}{p+1}$.
- **2.** En déduire que $\sum_{k=p}^{n} {k \choose p} = {n+1 \choose p+1}$.

Exercice 8. Soit E un ensemble à n éléments.

- **1.** Rappeler le cardinal de $\mathscr{P}(E)$.
- **2.** Rappeler le cardinal de $\mathscr{P}_k(E)$, l'ensemble des parties de E à k éléments.
- **3.** Montrer que le cardinal de $\{(A, B) \in \mathcal{P}(E)^2 \mid A \subset B\}$ est 3^n . *Indication : pour tout k \in [0, n], on pourra dénombrer les* $(A, B) \in \mathcal{P}(E)^2$ *tels que* $A \subset B$ *et* #B = k.

Exercice 9. À l'aide de la fonction $f: x \mapsto (1+x)^n$, calculer :

1.
$$\sum_{k=0}^{n} {n \choose k}$$
.

3. $\sum_{k=0}^{n} k \binom{n}{k}$.

2.
$$\sum_{k=0}^{n} (-1)^k \binom{n}{k}$$
.

4. $\sum_{k=0}^{n} \frac{1}{k+1} \binom{n}{k}$.

Exercice 10. Soient $n, p \in \mathbb{N}$ avec $p \le n$.

- **1.** Montrer que $\forall k \in [0, p], \binom{n}{k} \binom{n-k}{p-k} = \binom{p}{k} \binom{n}{p}$.
- **2.** En déduire que $\sum_{k=0}^{p} {n \choose k} {n-k \choose p-k} = 2^p {n \choose p}$.
- 3^* . Donner une interprétation combinatoire des identités précédentes. Indication : on pourra dénombrer de deux façons différentes le nombre de parties A et B d'un ensemble à n éléments, telles que $A \subset B$, #A = k et #B = p.

Exercice 11. Soit $j := e^{i\frac{2\pi}{3}}$.

- 1. Montrer que $1 + j + j^2 = 0$.
- **2.** Développer $(1+1)^n$, $(1+j)^n$ et $(1+j^2)^n$ à l'aide de la formule du binôme de Newton.
- 3. Calculer une forme exponentielle de 1+j et de $1+j^2$.
- **4.** Déduire des questions précédentes que pour tout $n \in \mathbb{N}$:

$$\sum_{k=0}^{3n} \binom{3n}{3k} = \frac{8^n + 2(-1)^n}{3}.$$

Exercice 12 \star **.** Soit p un nombre premier.

- **1.** Montrer que p divise $\binom{p}{k}$ pour tout $k \in [1, p-1]$.
- 2. En déduire que :

$$\forall a, b \in \mathbb{Z}, (a+b)^p \equiv a^p + b^p \pmod{p}.$$

Exercice 13*. Soit $A = (a_{i,j})_{i,j \in [\![1,n]\!]} \in \mathcal{M}_n(\mathbb{R})$ la matrice dont les coefficients sont $a_{i,j} = \binom{j-1}{i-1}$ si $i \leq j$ et 0 sinon. On considère l'espace vectoriel $\mathbb{R}_{n-1}[X]$ des polynômes de degré n-1 à coefficients réels. Soit f l'endomorphisme :

$$\mathbb{R}_{n-1}[X] \longrightarrow \mathbb{R}_{n-1}[X]$$
 $P(X) \longmapsto P(X+1).$

- 1. Montrer que f est un automorphisme et donner son inverse f^{-1} .
- **2.** Montrer que A est la matrice de f dans la base canonique de $\mathbb{R}_{n-1}[X]$.
- **3.** Déduire des questions précédentes que A est inversible et expliciter son inverse A^{-1} .
- **4.** Démontrer la formule d'inversion de Pascal : pour tous $(x_0, ..., x_{n-1}) \in \mathbb{R}^n$ et $(y_0, ..., y_{n-1}) \in \mathbb{R}^n$, on a :

$$\forall k \in \llbracket 0, n-1 \rrbracket, \ y_k = \sum_{i=0}^k \binom{k}{i} x_i \quad \Longleftrightarrow \quad \forall k \in \llbracket 0, n-1 \rrbracket, \ x_k = \sum_{i=0}^k (-1)^{k-i} \binom{k}{i} y_i.$$

- **5.** Application : dénombrement du nombre $s_{m,n}$ de surjections de [1, m] dans [1, n], où $m \ge n$.
 - **a.** Dénombrer le nombre d'applications de [1, m] dans [1, n].
 - **b.** Pour tout $k \in [0, n]$, dénombrer le nombre d'applications de [1, m] dans [1, n] dont exactement k éléments dans l'ensemble d'arrivée ont au moins un antécédent. On exprimera le résultat en fonction de $s_{m,k}$.

2

- **c.** En déduire que $n^m = \sum_{k=0}^n \binom{n}{k} s_{m,k}$.
- **d.** Calculer $s_{m,n}$ à l'aide de la formule d'inversion de Pascal.