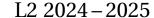
## **Probabilités**





## **Devoir surveillé nº 2** 6 décembre 2024

## **Consignes:**

- Écrire son nom et son numéro d'étudiant sur la copie.
- Les réponses doivent être rédigées soigneusement et les calculs suffisamment détaillés.
- La calculatrice n'est pas autorisée.

**Durée:** 1 heure (tiers temps: 1 heure 20 minutes).

Barème: 10 points.

**Exercice 1** (2 pts). On considère une urne contenant 30 boules de différentes couleurs. On note r le nombre de boules rouges. On tire simultanément au hasard 10 boules de l'urne et on note X le nombre de boules rouges obtenues.

- 1. Déterminer la loi de *X*.
- **2.** Si  $\mathbb{E}[X] = 6$ , combien y a-t-il de boules rouges dans l'urne?

**Exercice 2** (3 pts). On considère une pièce dont la probabilité de tomber sur face est  $p \in ]0,1[$ . Si la pièce tombe sur face, on lance un dé équilibré à 6 faces. Si la pièce tombe sur pile, on lance un dé équilibré à 4 faces. On note A l'évènement « la pièce tombe sur face », et on note X le résultat du dé lancé.

- 1. Déterminer la loi de *X* en fonction de *p*. On justifiera les calculs avec soin.
- **2.** Déterminer la valeur de p pour que  $\mathbb{E}[X] = \frac{13}{4}$ .

**Exercice 3** (2 pts). Soit  $(\Omega, \mathcal{P}(\Omega), P)$  un espace de probabilité.

**1.** Démontrer que pour tous évènements A, B, C tels que  $P(B \cap C) > 0$  et P(C) > 0, on a :

$$P(A \mid B \cap C) \times P(B \mid C) = P(A \cap B \mid C).$$

**2.** Soient A et B des évènements tels que 0 < P(A) < 1. Montrer que  $P(B \mid A) = P(B \mid A^c)$  si et seulement si A et B sont indépendants.

**Exercice 4** (3 pts). Soit  $\lambda \in \mathbb{R}$  un paramètre. On considère X et Y des variables aléatoires telles que  $\mathbb{E}[X] = \mathbb{E}[X^2] = \lambda$ , Var(Y) = 1 et  $\text{Var}(X + Y) = \lambda^2 + \lambda$ .

- **1.** Calculer Var(X) en fonction de  $\lambda$  et justifier que  $\lambda \in [0,1]$ .
- **2.** En déduire Cov(X, Y) en fonction de  $\lambda$ .
- **3.** Donner une condition **nécessaire** sur  $\lambda$  pour que X et Y soient indépendantes.