
Intégration
L2 M/P/CUPGE

2025 – 2026

Livret d’exercices

0 Calcul d’intégrales (révisions)

Exercice 1. Rappeler (ou rechercher) l’ensemble de définition et de dérivabilité des fonctions suivantes,
ainsi que l’expression de leur dérivée :

1. arcsin 2. arctan 3. argsh 4. argch

Exercice 2. Déterminer les primitives des fonctions suivantes sur chaque intervalle où elles sont définies.

1. f1(x) := x2

1+x3

2. f2(x) := 1
n
p

1+x
, n ∈N.

3. f3(x) := 1

tan x

4. f4(x) := (ln x)n

x
, n ∈Z.

5. f5(x) := x

x +1

6. f6(x) := exp(x +αex ), α ∈R.

Exercice 3. À l’aide d’une intégration par partie, déterminer les primitives des fonctions suivantes :

1. f1(x) := x cos(2x) 2. f2(x) := ln(x) 3. f3(x) := arctan(x) 4. f4(x) := x
cos2 x

Exercice 4. Calculer les intégrales suivantes à l’aide du changement de variable indiqué.

1. I1 :=
∫ e

1

1

2x ln x +x
dx avec x = eu

2. I2 :=
∫ 2

1

xp
1+x

dx avec x = u2 −1

3. I3 :=
∫ 1

0

x2

p
4−x2

dx avec x = 2sinu

4. I4 :=
∫ 1

0

1

(1+x2)2 dx avec x = tanu

Exercice 5. Calculer les intégrales suivantes :

1. I1 :=
∫ π

2

0
(cos x)2025 sin x dx.

2. I2 :=
∫ 1

0
x arctan x dx.

3. I3 :=
∫ 4

1

1

1+p
x

dx.

4. I4 :=
∫ π/2

−π/2
ex cos x dx.

5. I5 :=
∫ π/2

0
cos3(x)dx

6. I6 :=
∫ 2ln2

ln2

1p
ex −1

dx

7. I7 :=
∫ ln2

− ln2

1

ch x
dx

8. I8 :=
∫ π/3

−π/3
sin

(
x5 +x3)dx

9. I9 :=
∫ 3

2

1p
4x −x2

dx

Exercice 6 (intégrales de Wallis). Soit Wn =
∫ π/2

0
sinn(x)dx.

1. Calculer W0 et W1.

2. Établir une relation de récurrence entre Wn+2 et Wn .

3. En déduire que pour tout p ∈N :

W2p = (2p)!

(2p p !)2

π

2
, W2p+1 = 22p (p !)2

(2p +1)!
.

4. Montrer que la suite (Wn)n∈N est décroissante et strictement positive.

5. En déduire que Wn+1 ∼Wn lorsque n →+∞.

6. Montrer que pour tout n ∈N, (n +1)WnWn+1 = π
2 .

7. En déduire que Wn ∼
√

π
2n puis que

(2n
n

)∼ 22np
πn

lorsque n →+∞.

1



1 Sommes de Riemann

Exercice 7. Soient ϕ et ψ les fonctions en escalier définies sur [0,2] par :

ϕ(x) :=


1 si x ∈ [

0, 1
2

[
−2 si x ∈ [1

2 , 3
2

[
4 si x ∈ [3

2 ,2
] , ψ(x) :=


−1 si x ∈ [

0, 1
4

[
1 si x ∈ [1

4 , 1
2

[
3 si x ∈ [1

2 , 7
4

[
−1 si x ∈ [7

4 ,2
]

1. Représenter les fonctions ϕ et ψ.

2. Montrer que ϕ+ψ est une fonction en escalier.

3. Vérifier que
∫ 2

0 (ϕ+ψ) = ∫ 2
0 ϕ+∫ 2

0 ψ.

Exercice 8. Soit f : [0,1] →R la fonction définie par f (x) := x2. Soit n ∈N∗, on considère ϕn la fonction en

escalier définie par ϕn(x) := i 2

n2 si x ∈ [ i
n , i+1

n

[
, pour i ∈ �0,n −1�, et on pose ϕn(1) = (n−1)2

n2 .

1. Montrer qu’il existe c > 0 (à déterminer) telle que
∣∣ f (x)−ϕn(x)

∣∣≤ c
n pour tout x ∈ [0,1].

2. En déduire que f est Riemann-intégrable et calculer
∫ 1

0 f (x)dx à partir de la définition de l’intégrale
de Riemann. Le résultat est-il cohérent avec vos connaissances ?

Exercice 9. Soient a,b ∈R tels que a < b.

1. Donner l’expression de la subdivision régulière de [a,b] en n intervalles.

2. Soit f : [a,b] →R une fonction Riemann-intégrable. Montrer que :

lim
n→+∞

1

n

n−1∑
k=0

f

(
a +k

b −a

n

)
= 1

b −a

∫ b

a
f (x)dx.

3. Calculer les limites suivantes :

a. lim
n→+∞

1

n

n−1∑
k=0

(
k

n

)3

b. lim
n→+∞

n−1∑
k=0

n

n2 +k2

c. lim
n→+∞

1

n

n∑
k=1

cos2
(

kπ

n

)

d. lim
n→+∞

2n−1∑
k=0

1

2n +3k

e. lim
n→+∞

2n∑
k=n

1

k

f. lim
n→+∞

n∏
k=1

(
1+ k2

n2

) 1
n

4. a. Montrer que pour tout x ≥ 0, x − x3

6 ≤ sin x ≤ x.

b. En déduire la limite :

lim
n→+∞

n−1∑
k=0

sin
( n

n2 +k2

)
.

Exercice 10. Soit [a,b] un intervalle de R.

1. On admet que pour toutes fonctions en escalier ϕ,ψ, on a
∫ b

a (λϕ+ψ) = λ
∫ b

a ϕ+ ∫ b
a ψ. Montrer que

pour toutes fonctions Riemann-intégrables f , g , la fonction λ f + g est Riemann-intégrable et on a :∫ b

a
(λ f + g ) =λ

∫ b

a
f +

∫ b

a
g .

2. Montrer que si f est positive et Riemann-intégrable, alors
∫ b

a f ≥ 0. En déduire que si f et g sont

Riemann-intégrables et f ≤ g , alors
∫ b

a f ≤ ∫ b
a g .

3. Montrer que si f est Riemann-intégrable, alors | f | est Riemann-intégrable et
∣∣∣∫ b

a f
∣∣∣≤ ∫ b

a | f |.
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Exercice 11. Soit f : [a,b] →R une fonction de classe C 1, posons M = sup[a,b]| f ′|.
1. Justifier que M <+∞.

2. Montrer que pour tous c,d ∈ [a,b],
∣∣∣∫ d

c

(
f (x)− f (c)

)
dx

∣∣∣≤ M
2 (d − c)2.

3. On note xk := a +k b−a
n . Déduire de la question précédente que :∣∣∣∣∣

∫ b

a
f (x)dx − 1

n

n−1∑
k=0

f (xk )

∣∣∣∣∣≤ M

2n
(b −a)2,

Exercice 12⋆. Soit I := [a,b] un intervalle et soit σ := (ai )1≤i≤n une subdivision de I . On considère une
fonction bornée f : I → R. On appelle somme de Darboux inférieure et somme de Darboux supérieure as-
sociée à la subdivision σ les sommes :

Σ−( f ,σ) :=
n−1∑
i=0

mi (ai+1 −ai ), Σ+( f ,σ) :=
n−1∑
i=0

Mi (ai+1 −ai ),

où mi := inf
[ai ,ai+1]

f et Mi := sup
[ai ,ai+1]

f .

1. Montrer que m(b −a) ≤Σ−( f ,σ) ≤Σ+( f ,σ) ≤ M(b −a) où m := infI f et M := supI f .

2. Soient f + et f − les fonctions en escalier :

f + =
n−1∑
i=0

Mi 1Ii , f − =
n−1∑
i=0

mi 1Ii ,

où Ii = [ai , ai+1[ si 1 ≤ i ≤ n −2 et In−1 = [an−1, an], et 1Ii est la fonction indicatrice de l’intervalle Ii .
Montrer que f −(x) ≤ f +(x) pour tout x ∈ I . Que valent les intégrales de f + et f − ?

3. On suppose que pour tout ε > 0, il existe une subdivision σ telle que Σ+( f ,σ)−Σ−( f ,σ) ≤ ε. Montrer
que f est Riemann-intégrable sur I .

4. On veut prouver la réciproque de la question précédente. Supposons que f est Riemann-intégrable
sur I .

a. Montrer que pour tout ε> 0 et pour toute subdivision σ= (ai )0≤i≤n , il existe des pointages ξ+ =
(ξ+i )0≤i≤n et ξ− = (ξ−i )0≤i≤n associés à σ tels que :

Σ+( f ,σ) ≤ S( f ,σ,ξ+)+ε et Σ−( f ,σ) ≥ S( f ,σ,ξ−)−ε.

b. En déduire que tout ε> 0, il existe une subdivision σ telle que Σ+( f ,σ)−Σ−( f ,σ) ≤ ε.

5. En déduire que toute fonction monotone sur I est Riemann-intégrable.

2 Intégrale des fonctions continues

Exercice 13. Soit f : R→R une fonction continue et soit F (x) := ∫ x
0 f (t )dt . En justifiant, dire si les affirma-

tions suivantes sont vraies ou fausses.

1. La fonction F est lipschitzienne sur tout intervalle [a,b].

2. Si f est croissante sur R alors F est croissante sur R.

3. Si f est positive sur R alors F est croissante sur R.

4. Si f est T -périodique sur R alors F est T -périodique sur R.

5. Si f est paire alors F est impaire.

Exercice 14. Soit f : [a,b] →R une fonction positive.

1. On suppose qu’il existe x0 ∈ [a,b] tel que f est continue en x0 et f (x0) > 0. Montrer que
∫ b

a f (x)dx > 0.

2. En déduire que si f est continue et positive sur [a,b] et si
∫ b

a f (x)dx = 0, alors f est identiquement
nulle.
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Exercice 15. Soit f : R→R une fonction continue. On considère la fonction g : R∗ →R définie par :

g (x) := 1

x

∫ x

0
f (t )dt .

1. Montrer que g se prolonge par continuité en 0.

2. On suppose que lim
x→+∞ f (x) = ℓ. Montrer que lim

x→+∞g (x) = ℓ.

3. Donner un exemple où g admet une limite en +∞ mais pas f .

Exercice 16. Soit f : [−1,1] →R une fonction continue.

1. Montrer que la fonction g définie sur R par :

g (x) :=
∫ sin x

0
f (t )dt ,

est dérivable et calculer sa dérivée.

2. Montrer que si f (0) = 1, alors g est décroissante sur un voisinage ouvert de π.

Exercice 17. Soit a > 0, déterminer le minimum de la fonction f définie sur R par :

f (x) :=
∫ x+a

x
|t |dt .

Exercice 18 (théorèmes de la moyenne)⋆. Soit f : [a,b] →R une fonction continue.

1. Montrer qu’il existe c ∈ ]a,b[ tel que f (c) = 1
b−a

∫ b
a f (x)dx. Interpréter graphiquement ce résultat.

2. a. Soit g : [a,b] → R une fonction continue positive. À l’aide du théorème des valeurs intermé-
diaires, montrer qu’il existe c ∈ [a,b] tel que :∫ b

a
f (x)g (x)dx = f (c)

∫ b

a
g (x)dx. (∗)

b. Comparer ce résultat avec la question 1.

3. Sous les mêmes hypothèses qu’à la question 2, on veut montrer qu’il existe c ∈ ]a,b[ tel que (∗). On
suppose que g n’est pas la fonction nulle et que f n’est pas constante (sinon, il n’y a rien à montrer).

a. Justifier que f admet un maximum M et un minimum m sur l’intervalle [a,b], et que f ([a,b]) =
[m, M ].

b. Montrer que f (]a,b[) est un intervalle inclus dans [m, M ]. En déduire que ]m, M [ ⊂ f (]a,b[).

c. Démontrer que m
∫ b

a g (x)dx < ∫ b
a f (x)g (x)dx < M

∫ b
a g (x)dx.

d. Conclure.

Exercice 19. Montrer que pour toute fonction continue f : [a,b] → ]0,+∞[ :(∫ b

a
f (x)dx

)(∫ b

a

1

f (x)
dx

)
≥ (b −a)2.

Dans quels cas y a-t-il égalité ?

Exercice 20. Montrer que pour tous b > a > 0,
∫ b

a

1

x
dx ≤ b −ap

ab
.

Exercice 21. Soit f : [0, a] →R de classe C 1 telle que f (0) = 0. Montrer que :∫ a

0
f (x)2 dx ≤ a2

2

∫ a

0
f ′(x)2 dx.
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3 Intégrale des fractions rationnelles

Exercice 22. Déterminer la forme de la décomposition en éléments simples dans R(X ) des fractions ra-
tionnelles suivantes (on ne demande pas de calculer les coefficients).

1. F1(X ) := X 3 +1

(X −1)(X −2)(X −3)
.

2. F2(X ) := 1

(X +3)(X −2)2 .

3. F3(X ) := X 3 +1

(X 2 +1)(X −3)
.

4. F4(X ) := X 2

X 4 +2X 3 −2X −1
.

5. F5(X ) := X 3 +1

(X 2 −1)2 .

6. F6(X ) := 1

(X 2 +X +2)(X 2 +2X +1)
.

Exercice 23. Déterminer la décomposition en éléments simples dans R(X ) des fractions rationnelles sui-
vantes.

1. F1(X ) := X 2 +1

(X −1)(X −2)(X −3)
.

2. F2(X ) := 1

X (X +1)2 .

3. F3(X ) := X 7 +1

X 2 +1
.

4. F4(X ) := X 2

(X −1)3 .

5. F5(X ) := 2X 3 +3X 2 +5

X 2 +X +1
.

6. F6(X ) := 1

X 4 +X 2 +1
.

Exercice 24. Déterminer les primitives des fonctions suivantes.

1. f1(x) := 1

x2 −4x +2

2. f2(x) := x3 −2

x3 −x2

3. f3(x) := x

x2 +x +1

4. f4(x) := 2x −3

(x2 −1)(2x +3)

5. f5(x) := x3

x4 +3x2 +2

6. f6(x) := x2(x2 +1)

x2 +4

7. f7(x) := x +1

x4(x2 +x +1)

8. f8(x) := x

(x −1)5(x2 +1)

9. f9(x) := 1

x6 −1

Exercice 25.

1. En développant cos
( x

2 + x
2

)
, sin

( x
2 + x

2

)
et tan

( x
2 + x

2

)
, montrer que si t = tan

( x
2

)
alors :

cos(x) = 1− t 2

1+ t 2 , sin(x) = 2t

1+ t 2 , tan(x) = 2t

1− t 2 .

2. À l’aide du changement de variable t = tan
( x

2

)
, calculer les primitives des fonctions suivantes :

a. f1(x) := 1

sin x
b. f2(x) := 1

1+cos x
c. f3(x) := 1− tan x

1+ tan x

Remarque : des changements de variables plus simples sont parfois possibles, voir les règles de Bioche.

4 Intégrales impropres

Exercice 26. À partir de la définition, déterminer si les intégrales impropres ci-dessous sont convergentes,
et les calculer le cas échéant. Pour I4 et I5, discuter selon la valeur de α ∈R.

1. I1 :=
∫ +∞

0
e−x dx

2. I2 :=
∫ 1

0
ln(x)dx

3. I3 :=
∫ +∞

0

2x

1+x2 dx

4. I4 :=
∫ +∞

1

1

xα
dx

5. I5 :=
∫ 1

0

1

xα
dx

6. I6 :=
∫ +∞

0

(
1p
x
− 1p

x +1

)
dx
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Exercice 27. Déterminer si les intégrales impropres suivantes sont convergentes (on ne cherche pas à les
calculer).

1.
∫ +∞

0

p
x

x2 +1
dx

2.
∫ +∞

0

1p
x3 +1

dx

3.
∫ +∞

0

1

x2 +4x +3
dx

4.
∫ +∞

0

x +1

x2 +2
dx

5.
∫ +∞

0

1p
x3 +x

dx

6.
∫ +∞

−∞
1

x2 dx

7.
∫ +∞

1

sin x

x2 dx

8.
∫ 1

−∞
ex (x2 +1)dx

9.
∫ +∞

−∞
1

x2 +x +1
dx

10.
∫ 1

0

ex

x
dx

11.
∫ 1

0

ln(1−x)

x
dx

12.
∫ 1

0

x

ex −1
dx

13.
∫ π

2

0

1p
tan x

dx

14.
∫ 2

0

1

x3 −8
dx

15.
∫ 1

0
sin

(
1

x

)
dx

16.
∫ π

2

0

1

cos x
dx

17.
∫ 2

1

cos x

1−p
x

dx

18.
∫ +∞

1

1p
x4 −1

dx

19.
∫ +∞

0

e−x

p
x

dx

20.
∫ e

1

1

lnα(x)
dx

21.
∫ 1

0

1−cos x

xα
dx

22.
∫ 1

0

sin(
p

x)− tan(
p

x)

x2 dx

23.
∫ 1

0

x sin(x2)

(1−cos x)2 dx

24.
∫ +∞

0

x2 −1

x2 +1
cos(x)dx

Exercice 28 (Examen 2022–2023). Soit α ≥ 0 un réel. Étudier, en fonction de α, la convergence de l’inté-
grale généralisée :

Iα =
∫ +∞

0

5x3 +3x +1p
x (2xα+3x +1)

dx.

Justifier vos réponses et préciser en quelle(s) borne(s) Iα est généralisée.

Exercice 29. On considère l’intégrale généralisée suivante, appelée intégrale de Dirichlet :

I =
∫ +∞

0

sin x

x
dx.

1. À l’aide d’une intégration par partie, montrer que I est une intégrale convergente.

2. On souhaite montrer que l’intégrale de Dirichlet n’est pas absolument convergente.

a. Montrer que pour tout n ∈N : ∫ (n+1)π

nπ

|sin x|
x

dx ≥ 2

(n +1)π
.

b. En déduire que
∫ +∞

0
|sin x|

x dx diverge.

Exercice 30. Montrer que l’intégrale
∫ +∞

0
sin(t 2)dt est convergente.

Exercice 31. Soit f : R→ R une fonction localement Riemann–intégrable telle que
∫ +∞

0 f (t )dt converge.
Pour tout x ∈R, on pose :

G(x) =
∫ 2x

x
f (t )dt .

Déterminer la limite de G(x) lorsque x →+∞.
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5 Limites d’intégrales

Exercice 32. Pour tout n ≥ 2, soit fn la fonction continue sur R+ telle que fn est nulle sur [0,n[∪]2n2,+∞[,
fn est affine sur [n,2n] et sur [2n,2n2], et fn(2n) = 1

n .

1. Représenter fn .

2. Montrer que ( fn) converge uniformément vers 0 sur R+.

3. Calculer
∫ +∞

0 fn(x)dx. A-t-on
∫ +∞

0 fn(x)dx → 0 lorsque n →+∞ ?

Exercice 33. Pour tout x > 0, on considère fn(x) := sin(xn)

xn(1+x2)
.

1. Montrer que ∀t ∈R, |sin t | ≤ |t |.
2. En déduire que fn est intégrable sur ]0,+∞[.

3. Calculer la limite ponctuelle de ( fn)n∈N.

4. Calculer la limite de
∫ +∞

0 fn(x)dx lorsque n →+∞.

Exercice 34. Soit f : [a,b] → [0,1] une fonction strictement croissante telle que f (b) = 1. Montrer que :

lim
n→+∞

∫ b

a
f (x)n dx = 0.

Exercice 35. Après avoir justifier l’existence des intégrales pour tout n, calculer les limites suivantes :

1. lim
n→+∞

∫ +∞

0

e−
x
n

1+x2 dx

2. lim
n→+∞

∫ +∞

0

ln(x)

n2 +x2 dx

3. lim
n→+∞

∫ +∞

1

n2x4 +3x2 +7

(n2x4 +3)(x2 +1)
dx

4. lim
n→+∞

∫ 1

0

n
p

x +1

nx +1
dx

5. lim
n→+∞

∫ +∞

0

sin(nxn)

nxn+ 1
2

dx

6. lim
n→+∞

∫ +∞

0

1

(1+x2) n
p

1+xn
dx

Exercice 36. Soit f : R+ →R une fonction continue qui converge vers une limite ℓ en +∞.

1. Montrer que f est bornée.

2. Déterminer la limite de
∫ +∞

0
f (nx)
1+x2 dx lorsque n →+∞.

3. En déduire que :

lim
n→+∞

∫ +∞

0

n f (t )

n2 + t 2 dt = π

2
ℓ.

Exercice 37. Soit In =
∫ 1

0

1

1+ t n dt .

1. Montrer que (In)n∈N converge vers 1.

2. Montrer que In = 1− ln2
n +o

( 1
n

)
. Indication : intégrer par partie 1− In .

Exercice 38. Soit I =
∫ +∞

0

sin x

ex −1
dx.

1. Montrer que I est convergente.

2. On pose Sn(x) =∑n
k=0 e−kx . Montrer que (Sn)n∈N converge simplement sur R∗+.

3. Montrer que :

I =
+∞∑
k=0

∫ +∞

0
sin(x)e−(k+1)x dx.

4. En déduire que I =
+∞∑
n=1

1

n2 +1
.
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6 Intégrales à paramètre

Exercice 39. Soit f : R→R la fonction définie par l’intégrale à paramètre :

f (x) :=
∫ π

0
cos(x sin t )dt .

1. Montrer que f est continue sur R.

2. Montrer que f est de classe C 2 sur R et exprimer f ′(x) et f ′′(x) comme des intégrales à paramètre.

3. Montrer que x
(

f ′′(x)+ f (x)
)= ∫ π

0 x cos2(t )cos(x sin t )dt .

4. En intégrant par partie cette dernière intégrale, montrer que f est solution de l’équation différentielle :

x y ′′+ y ′+x y = 0.

Exercice 40. On appelle fonction gamma d’Euler la fonction définie par :

Γ(x) :=
∫ +∞

0
t x−1 e−t dt .

1. Déterminer l’ensemble de définition de Γ.

2. Montrer que Γ est continue sur sur R∗+.
Indication : montrer que Γ est continue sur tout intervalle [a,b] ⊂R∗+.

3. Montrer que Γ(1) = 1 et ∀x > 0, Γ(x +1) = xΓ(x).

4. En déduire que ∀n ∈N, Γ(n +1) = n!.

5. Déterminer un équivalent de Γ(x) lorsque x → 0.

Exercice 41 (Examen 2023 – 2024). L’objectif de cet exercice est de calculer l’intégrale de Gauss :

I :=
∫ +∞

0
e−x2

dx.

Pour cela, on introduit Φ la fonction définie sur R+ par :

Φ(x) :=
∫ +∞

0

e−x(1+t 2)

1+ t 2 dt .

1. Montrer que Φ est bien définie et continue sur R+.

2. Montrer que Φ est de classe C 1 sur R∗+ et calculer Φ′(x).

3. En utilisant le changement de variable u = t
p

x, relier
∫ A

0 e−xt 2
dt et

∫ A
p

x
0 e−u2

du. En déduire une

relation entre Φ′(x), e−xp
x

et I .

4. En utilisant le changement de variable x = t 2, établir une relation entre
∫ A

0
e−xp

x
dx et

∫ p
A

0 e−t 2
dt pour

tout A > 0.

5. Montrer que lim
x→+∞Φ(x) = 0 et calculer Φ(0).

6. En intégrant la relation trouvée à la question 3 entre 0 et A > 0, puis en faisant tendre A vers +∞,
calculer I .

Exercice 42. L’objectif de l’exercice est de calculer l’intégrale de Dirichlet I := ∫ +∞
0

sin t
t dt . Pour cela, on

pose :

∀x ∈R+, F (x) :=
∫ +∞

0

sin t

t
e−xt dt .

1. Justifier que F est bien définie sur R+, et continue sur R∗+.

2. Montrer que F est de classe C 1 sur R∗+.

3. Montrer que F ′(x) =− 1
1+x2 sur ]0,+∞[. En déduire que F (x) = π

2 −arctan(x) pour tout x > 0.
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4. Posons G(x) = ∫ +∞
x

sin t
t dt . Montrer que G est dérivable sur R+ est donner l’expression de G ′(x).

5. Montrer que ∀x ∈R∗+, F (x)−F (0) =−∫ +∞
0 G

( s
x

)
e−s ds.

6. Démontrer que F est continue en 0 et en déduire la valeur de I .

Exercice 43. Soit I un intervalle. On considère f : I ×R→ R continue admettant une dérivée partielle par
rapport à sa première variable telle que ∂x f soit continue sur I ×R. Soient u : I → R et v : I → R des fonc-
tions dérivables. Calculer la dérivée de :

F (x) :=
∫ v(x)

u(x)
f (x, t )dt ,

en fonction de u, v , f et de leurs dérivées.

7 Intégrales doubles

Exercice 44. Calculer
Ï

D
f (x, y)dxdy dans les cas suivants.

1. f (x, y) = x2 y , D = [0,2]× [0,1].

2. f (x, y) = x2 y , D = {
(x, y) ∈R2

∣∣0 ≤ x ≤ 2, 0 ≤ y ≤ x
2

}
.

3. f (x, y) = x2 y , D = {
(x, y) ∈R2

∣∣−1 ≤ x ≤ 1, 0 ≤ y ≤ x
}
.

4. f (x, y) = x2 + y2, D = {
(x, y) ∈R2

∣∣0 ≤ x ≤ 2, x2 ≤ y ≤ x
}
.

5. f (x, y) = x y , D = {
(x, y) ∈R2

∣∣ y ≥ 0, x −4y +2 ≥ 0, x −2y −2 ≤ 0
}
.

6. f (x, y) = cos
(
πx
2

)
, D = {

(x, y) ∈R2
∣∣ y ≥ 0, 2y ≤ x ≤ 3− y

}
.

Exercice 45. Vérifier que l’application Φ : U →V est un C 1–difféomorphisme et calculer son jacobien.

1. U =V =R2 et Φ(u, v) = (au +bv,cu +d v) avec ad −bc ̸= 0.

2. U = ]0,+∞[× ]−π,π[, V =R2 \ (R−× {0}), et Φ(r,θ) = (r cosθ,r sinθ).

Exercice 46 (aire intérieure d’une ellipse). Calculer l’aire de D =
{

(x, y) ∈R2
∣∣∣ x2

a2 + y2

b2 ≤ 1
}

, où a,b ∈R∗+.

Exercice 47. Calculer
Ï

D
f (x, y)dxdy dans les cas suivants, à l’aide d’un changement de variables en co-

ordonnées polaires.

1. f (x, y) = x2 + y2, D est le disque de centre (0,0) et de rayon 1.

2. f (x, y) = x2 + y2, D est le disque de centre (0,1) et de rayon 1.

3. f (x, y) = x + y , D = {
(x, y) ∈R2

∣∣x ≥ 0, 1 ≤ x2 + y2 ≤ 4
}
.

4. f (x, y) =
√

x2 + y2, D = {
(x, y) ∈R2+

∣∣2y ≤ x2 + y2 ≤ 1
}

Exercice 48. L’objectif de cet exercice est de calculer l’intégrale de Gauss :

I =
∫ +∞

−∞
e−

x2

2 dx.

Pour R > 0, on note D(R) le disque de centre (0,0) et de rayon R, et on note C (R) = [−R,R]2. On considère

la fonction f (x, y) = exp
(
− x2+y2

2

)
.

1. Justifier la convergence de I .

2. Montrer que : Ï
D(R)

f (x, y)dxdy ≤
Ï

C (R)
f (x, y)dxdy ≤

Ï
D(R

p
2)

f (x, y)dxdy.

3. Calculer
Î

D(R) f (x, y)dxdy .

4. En déduire la valeur de I .
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